A Pipeline Framework for Dependency Parsing

نویسندگان

  • Ming-Wei Chang
  • Quang Do
  • Dan Roth
چکیده

Pipeline computation, in which a task is decomposed into several stages that are solved sequentially, is a common computational strategy in natural language processing. The key problem of this model is that it results in error accumulation and suffers from its inability to correct mistakes in previous stages. We develop a framework for decisions made via in pipeline models, which addresses these difficulties, and presents and evaluates it in the context of bottom up dependency parsing for English. We show improvements in the accuracy of the inferred trees relative to existing models. Interestingly, the proposed algorithm shines especially when evaluated globally, at a sentence level, where our results are significantly better than those of existing approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

Multilingual Dependency Parsing: A Pipeline Approach

This paper develops a general framework for machine learning based dependency parsing based on a pipeline approach, where a task is decomposed into several sequential stages. To overcome the error accumulation problem of pipeline models, we propose two natural principles for pipeline frameworks: (i) make local decisions as reliable as possible, and (ii) reduce the number of sequential decisions...

متن کامل

Deep Lexical Segmentation and Syntactic Parsing in the Easy-First Dependency Framework

We explore the consequences of representing token segmentations as hierarchical structures (trees) for the task of Multiword Expression (MWE) recognition, in isolation or in combination with dependency parsing. We propose a novel representation of token segmentation as trees on tokens, resembling dependency trees. Given this new representation, we present and evaluate two different architecture...

متن کامل

A Pipeline Model for Bottom-Up Dependency Parsing

We present a new machine learning framework for multi-lingual dependency parsing. The framework uses a linear, pipeline based, bottom-up parsing algorithm, with a look ahead local search that serves to make the local predictions more robust. As shown, the performance of the first generation of this algorithm is promising. 1 System Description 1.1 Parsing as a Pipeline Pipeline computation is a ...

متن کامل

LFG without C-structures

We explore the use of two dependency parsers, Malt and MST, in a Lexical Functional Grammar parsing pipeline. We compare this to the traditional LFG parsing pipeline which uses constituency parsers. We train the dependency parsers not on classical LFG f-structures but rather on modified dependency-tree versions of these in which all words in the input sentence are represented and multiple heads...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006